Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400603, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659175

RESUMO

Solar-driven interfacial evaporation is recognized as a sustainable and effective strategy for desalination to mitigate the freshwater scarcity issue. Nevertheless, the challenges of oil contamination, salt accumulation, and poor long-term stability of the solar desalination process limit its applications. Herein, a 3D biomass-based multifunctional solar aerogel evaporator is developed for water production with fabricated chitosan/lignin (CSL) aerogel as the skeleton, encapsulated with carbonized lignin (CL) particles and Ti3C2TiX (MXene) nanosheets as light-absorbing materials. Benefitting from its super-hydrophilic wettability, interconnected macropore structure, and high broadband light absorption (ca. 95.50%), the prepared CSL-C@MXene-20 mg evaporator exhibited a high and stable water evaporation flux of 2.351 kg m-2 h-1 with an energy conversion efficiency of 88.22% under 1 Sun (1 kW m-2) illumination. The CSL-C@MXene-20 mg evaporator performed excellent salt tolerance and long-term solar vapor generation in a 3.5 wt.% NaCl solution. Also, its super-hydrophilicity and oleophobicity resulted in superior salt resistance and anti-fouling performance in high salinity brine (20 wt.% NaCl) and oily wastewater. This work offers new insight into the manufacture of porous and eco-friendly biomass-based photothermal aerogels for advanced solar-powered seawater desalination and wastewater purification.

2.
ACS Appl Mater Interfaces ; 15(35): 42080-42093, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37624365

RESUMO

Aerogels with low density, high mechanical strength, and excellent elasticity have a wide potential for applications in wastewater treatment, thermal management, and sensors. However, the fabrication of such aerogels from biomass materials required complex preparation processes. Herein, a sustainable and facile strategy was reported to construct lignin/cellulose aerogels (LCMA) with three-dimensional interconnected structures by introducing homologous lignin with a polyphenyl propane structure as a structural enhancer through a top-down directional freezing approach, prompting a 2036% enhancement in compressive modulus and an 8-12-fold increase in oil absorption capacity. In addition, the hydrophobic aerogels with superelasticity were achieved by combining the aligned polygon-like structure and flexible silane chains, which exhibited remarkable compressional fatigue resistance and superhydrophobicity (WCA = 168°). Attributed to its unique pore design and surface morphology control, the prepared aerogel exhibited excellent performance in immiscible oil-water separation and water-in-oil emulsion separation. Due to the ultra-low density (8.3 mg·cm-3) as well as high porosity (98.87%), the obtained aerogel showed a low thermal conductivity (0.02565 ± 0.0024 W·m-1·K-1), demonstrating a potential in insulation applications. The synthetic strategy and sustainability concept presented in this work could provide guidance for the preparation of advanced biomass-based aerogels with unique properties for a wide range of applications.

3.
Int J Biol Macromol ; 225: 1182-1192, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423809

RESUMO

In order to improve the effect of anti-tumor drugs, a magnetic delivery system for targeted drug was reported. Firstly, aminated lignosulfonate (ALS) and carboxymethyl chitosan (CMCS) were used to fabricate nano Fe3O4 to obtain pH-responsive magnetic Fe3O 4 /CMCS/ALS nanoparticles. Then the nanoparticles were loaded with doxorubicin hydrochloride (DOX), realizing the targeted delivery and controlled release of anti-tumor drugs. It was found that the amount of crosslinking agent and emulsifier were the key factors affecting the morphology and size of the magnetic nanoparticles. Under optimized conditions, the particle size was about 79.9-169.9 nm, exhibiting excellent pH responsiveness. When the drug-to-material ratio was 11:10, the DOX loading rate and the encapsulation rate of the nanoparticles was 48.68 % and 86.23 %. While the Fe3O4 /CMCS/ALS-DOX particles could release 63.14 %, 56.71 %, and 14.28 % of DOX at pH 4.0, 5.3, and 7.4, respectively. The results showed that the Fe3O4 /CMCS/ALS particles exhibited excellent drug loading and release behavior based on the pH responsiveness, which could be described by Langmuir adsorption model and Fick's law of diffusion respectively. MTT assay and Live/dead staining experiments also showed that the drug-loaded particles had obvious growth inhibition on cancer cells.


Assuntos
Antineoplásicos , Quitosana , Nanopartículas , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Tamanho da Partícula
4.
J Colloid Interface Sci ; 629(Pt A): 422-433, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36088690

RESUMO

HYPOTHESIS: Super-hydrophilic/underwater super-oleophobic materials composed of biomass show great advantages for the treatment of oily wastewater due to their inherent fouling resistance. However, the development of three-dimensional materials from biomass for oil-water separation is still a challenge. It is universally acknowledged that constructing a rough structure on the surface of hydrophilic substrates would significantly improve the underwater oleophobicity and oil-water separation performance. EXPERIMENTS: In this work, a three-dimensional lignin/cellulose aerogel (LCA) was developed through sol-gel method with freeze-drying. The rough microstructure and 3D interconnected network composed of lignin and cellulose impart excellent underwater superoleophobicity to LCA for efficient oil-water separation. FINDINGS: The introduction of lignin to cellulose aerogel could effectively enhance its surface roughness, water permeation speed and underwater oil contact angle. Especially, the swelling properties of the hydrogel could be regulated by modulating the content of lignin, which could further control the pore size of aerogels to optimize the separation flux. The as-prepared aerogel showed remarkable performance in separating various oil-water mixtures and oil-in-water emulsions, with a separation flux of 7646 ± 167 L·m-2·h-1 and oil rejection rate >99 %. These excellent properties combined with its facile fabrication make LCA a promising candidate for the treatment of oily wastewater.


Assuntos
Celulose , Purificação da Água , Celulose/química , Lignina , Purificação da Água/métodos , Hidrogéis , Águas Residuárias , Óleos/química
5.
Int J Biol Macromol ; 175: 516-525, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571593

RESUMO

This study demonstrated a facile method to synthesize lignin-based carbon dots (L-CDs) first. Results indicated that the L-CDs had a diameter of 2-5 nm and a graphene-like crystalline structure. It was found that under the optimal synthesis conditions, the fluorescence lifetime of L-CDs was about 12 ns. Within the range of pH 1-10, the fluorescence intensity of the L-CDs and pH value followed a linear relationship. With the contribution of L-CDs, pH/temperature dual responsive hydrogel was synthesized. The elastic modulus G' of hydrogel was much higher than viscous modulus G″. When the PVA content was larger than 10 wt%, the temperature sensitivity and water retention rate gradually decreased. The skeleton of hydrogels had a typical porous honeycomb structure, which made it possible to control its internal pore size by adjusting the content of PVA. There was a linear relationship between the fluorescence intensity of hydrogels and pH value in the range of pH 1-7. Therefore, the pH/temperature dual responsive hydrogel presented a new route for designing tissue engineering scaffolds and drug carriers.


Assuntos
Hidrogéis/síntese química , Lignina/química , Pontos Quânticos/química , Carbono/química , Portadores de Fármacos/química , Fluorescência , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Lignina/síntese química , Microscopia de Força Atômica/métodos , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Temperatura , Engenharia Tecidual/métodos , Alicerces Teciduais , Viscosidade
6.
Int J Biol Macromol ; 150: 1147-1154, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743717

RESUMO

In order to develop a biomass-based superplasticizer, kraft lignin (KL) was grafted with isopentenol polyoxyethylene ether (TPEG) to prepare a novel macromonomer (KL-TPEG). It was shown that the retention ratio of the aliphatic CC bond increased from 81.07% to 90.20% with the increase of m(TPEG)/m(KL). When the grafting ratio was increased, the average number of TPEG grafted on one KL molecule was approximately 1.4, 3.1, 4.6, 6.2 and 7.6. The star-like structure was also confirmed by FT-IR, 1H NMR and GPC. KL-TPEG had favorable surface activity and dispersion stability on the cement particles. It was illustrated that the shear stress and shear viscosity of the cement slurries with KL-TPEG were significantly less than that of blank slurry. The dispersion-retention ability of KL-TPEG on the slurry was also gradually enhanced with the increase of the grafting ratio of TPEG. It was seldom reported on the biomass-based TPEG. Through modified with KL, the rheology behavior and the dispersion-retention ability of TPEG was greatly improved, and the cost of TPEG was also reduced, thus this study not only promoted the development of biomass-based macromonomer, but also helped for the high value utilization of lignin.


Assuntos
Lignina/química , Pentanóis/química , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade
7.
Bioresour Technol ; 294: 122133, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31525583

RESUMO

Enzymatic hydrolysis of lignocellulose to produce bioethanol by cellulase is an important method to alleviate the energy crisis. In this paper, in order to overcome the shortcomings of low efficiency, high cost and easy deactivation of cellulase in the process of bio-refinery, pH-responsive lignin-based magnetic nanoparticles (Fe3O4/LSQA) were synthesized to immobilize and recover cellulase. It was shown that a high immobilization ratio of 55.52% for cellulase was obtained. Meanwhile, the desorption ratio was 68.27% by adjusting the pH of the system. After five reusing cycles, the desorbed cellulase retained 31.79% of the relative activity due to the pH responsiveness of Fe3O4/LSQA. These results not only provide a new idea for the recycling of cellulase, but also broaden the application of industrial lignin and increase the extra value.


Assuntos
Celulase , Nanopartículas de Magnetita , Concentração de Íons de Hidrogênio , Hidrólise , Lignina
8.
Environ Technol ; 39(1): 44-50, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28278775

RESUMO

In order to extend the application of black liquor (BL), amino group was introduced in lignin through Mannich reaction. The structure of the aminated black liquor (ABL) was characterized with FT-IR, elemental analysis, the zeta potential and the inherent viscosity. The foam generated by ABL was more stable, for the surface tension was lower. The results of the mortar test indicated that the water-retention rate of the fresh mortar incorporated with 0.3 wt% ABL was 89.1%; the consistency loss was about 39.7% after 4 h. When the dosage was less than 0.3 wt%, ABL could increase the bond strength of the hardened mortars. The results showed that ABL could be used as an effective ready-mixed wet mortar admixture. This study not only provided a new method to develop new mortar admixture, but also alleviated the pollution of BL.


Assuntos
Materiais de Construção , Resíduos Industriais/análise , Teste de Materiais , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Phys Chem Chem Phys ; 13(38): 17323-32, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21887419

RESUMO

Developing microstructures, such as low molecular aggregates, spherical micelles and multi-compartment micelles, is an expanding area of research in Materials Science. By applying an atom transfer radical polymerization (ATRP) process to cross-linkable fluorinated diblock copolymers and analyzing the data we are able to demonstrate the potential for developing films with different micro-structures for additional biological research. Applying the Dissipative Particle Dynamic (DPD) Method, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) techniques to cross-linkable fluorinated diblock copolymers of (methyl methacrylate-co-hydroxyethyl methacrylate-co-butyl methacrylate)-b-2-(perfluoroalkyl)ethyl methacrylate (MMA-co-HEMA-co-BMA-b-FMA) we were able to analyze the structures and their relationships to the aggregation of various microstructure formations through the use of various solvents in the process. For the self-assembly of the cross-linkable diblock copolymer in solutions, the DPD simulation results are only in qualitative agreement with experimental data of aggregate morphologies and sizes. This suggests an improved approach to creating materials and methods necessary for studying microstructures in films used in other research areas. Our work examines whether using selective solvents can be easily extended to prepare aggregates with different morphologies, which is an effective shortcut to obtain films with different microstructures. DPD simulation can be considered as an adjunct to experiments and provides other valuable information for the experiment.


Assuntos
Polimerização , Ácidos Polimetacrílicos/química , Reagentes de Ligações Cruzadas/química , Halogenação , Micelas , Simulação de Dinâmica Molecular , Ácidos Polimetacrílicos/síntese química , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA